临床应用

Medical implications of antimicrobial coating polymers- organosilicon quaternary ammonium chloride

Mod Chem Appl. 2013, 1:3 Hospital-Associated Infections (HAI) are commonly caused by the invasive device and prosthesis implanted in the body. The practice of coating antimicrobial agents on biomedical surfaces or modifying the composite resin with such agents has been shown effective in reducing the incidence of HAI. Quaternary Ammonium Chloride (QAC) salts and the Organosilicon derivatives (OrganoSiQAC) are surface active to serve these applications. Clinically, Benzalkonium chloride (BAC) is effective against a board range of microorganisms. However, it has been recognized as the source of several hospital outbreaks due to contamination with gram-negative bacteria. Safety aspects such as potential toxicities and in vivo efficacies were poorly defined. On the other hand, physical antimicrobial polymers formed by OrganoSiQAC compounds were found to be chemically stable and nonleachable from the bonded surface, whereas the biocidal effects were exerted by the end satellite QAC groups. Recent studies have also reported the application of such bioactive films on animated surfaces such as skin and mucosal lining. This opens the future perspective with multiple applications in infection control, in the regards of reduce use of antibiotics, treatment alternatives for multiple antibiotic resistance, blocking the route of transmission of specific organisms in clinical and community settings.
  • 发布作者: Yuen John WM* and Yung Jolene YK
  • 发布日期: 2013
  • 关键词: Ammonium chloride; OrganoSiQAC compounds; Antibiotic resistance
临床应用

Medical  Implications  of Antimicrobial  Coating  Polymers-  Organosilicon

Quaternary Ammonium Chloride

Yuen John WM* and Yung Jolene YK

School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

 

Abstract

Hospital-Associated Infections (HAI) are commonly caused by the invasive device and prosthesis implanted in the body. The practice of coating antimicrobial agents on biomedical surfaces or modifying the composite resin with such agents has been shown effective in reducing the incidence of HAI. Quaternary Ammonium Chloride (QAC) salts and the Organosilicon derivatives (OrganoSiQAC) are surface active to serve these applications. Clinically, Benzalkonium chloride (BAC) is effective against a board range of microorganisms. However, it has been recognized as the source of several hospital outbreaks due to contamination with gram-negative bacteria. Safety aspects such as potential toxicities and in vivo efficacies were poorly defined. On the other hand, physical antimicrobial polymers formed by OrganoSiQAC compounds were found to be chemically stable and nonleachable from the bonded surface, whereas the biocidal effects were exerted by the end satellite QAC groups. Recent studies have also reported the application of such bioactive films on animated surfaces such as skin and mucosal lining. This opens the future perspective with multiple applications in infection control, in the regards of reduce use of antibiotics, treatment alternatives for multiple antibiotic resistance, blocking the route of transmission of specific organisms in clinical and community settings.

 


Keywords:    Ammonium    chloride;    OrganoSiQAC    compounds;

Antibiotic resistance

Introduction

Quaternary   ammonium   compounds    (Quats)   especially,   the chloride  salts  are  extensively  used  for  clinical  purposes  such  as preoperative  disinfection  of unbroken  skin,  application  to  mucous membranes,   and   disinfection   of   noncritical   surfaces    [1].   The cationic properties of Quats contribute to a variety of applications as disinfectants,   antiseptics,  herbicides,   spermicides,   detergents,   and sanitizing agents [2]. Organosilicon Quaternary Ammonium Chloride (OrganoSiQAC)  salts are cationic polymeric materials that typically contain a Quaternary Ammonium Chloride (QAC) end group in the organosilicon architecture. Such organosilicon-substituted amines are well known active surfactant-mediated agents that are able to cause polymerization immediately after contacting any surface. Organosilicon chemistry is the designated field of science studying the properties and reactivity of all organic compounds containing carbon-silicon (Si-C) bonds. In this mini-review, the authors are particularly interested in exploring two relative Quats QAC and Organiosilicon; briefly discuss their chemistry and synthesis, utilization in healthcare as antimicrobial agents, safety issues, major shortcomings and future perspective.

The Chemistry of Quats and OrganoSiQAC

Quats share a common tetra alkyl ammonium structure of N+4xR where a nitrogen (N+) atom is directly linked to four alkyl groups (R), forming positively charged polyatomic ions with a variety of complexity [3]. In the process of quaternization, a tertiary amine can be converted to Quats by alkylation, and typically one of the alkyl groups is larger than the others  [4]. Benzalkonium Chloride (BAC), the most widely used QAC-based antiseptic in healthcare, is synthesized from the long- chain alkyldimethylamine and benzyl chloride:

CH3 (CH2)nN(CH3)2 + ClCH2C6H5 → [CH3 (CH2)nN(CH3)2CH2C6H5]+Cl-  Besides      BAC,      other      antimicrobial      QAC      compounds, such         as         alkyldimethylbenzylammonium         chloride         and

didecyldimethylammonium    chloride,    are    also    used    as    active antimicrobial agents.

Silicon (Si), on the other hand is tetravalent and tetrahedral that allows the formation of organosilicon amines with basic structure of


Si·4xR, whereas OrganoSiQAC contains typically a QAC substitute as one of the alkyl groups [5]. When compared with the carbon-carbon (C-C)  bonds  of hydrocarbons,  Si-C  bonds  are  more  readily  to  be broken because of the weaker bond dissociation energy  (Si 451 kJ/ mol vs C 607 kJ/mol). The greater electronegativity (C 2.55 vs Si 1.90) of carbon atom contributes also to the polarization of Si towards the carbon. Compare with Quats and QAC which are entirely hydrocarbon in nature, the  cationic  OrganoSiQAC molecules have lower micelle concentrations and provide lower surface tension due to the presence of silicon  in  their  hydrophobic  groups.  Despite  organosilicons  are highly hydrophobic, quaternization could further increase the water solubility of the compound. The synthesis of OrganoSiQAC involves multiple steps based on either one of the two catalytic methods: (1) the formation of tertiary amino silicon by Si-H addition reaction, followed by reaction with haloalkane; and (2) the Menschutkin reaction between halogenoalkyl  silicone  unit  and  tertiary  amines.  Recently,  Li  et  al. [6] has described a one-step Menschutkin reaction without catalyst and  successfully  synthesized  two  OrganoSiQAC  molecules,  namely Diethyl-benzyl- [3-methyldimethoxyl]silpropyl   ammonium   chloride (DEBSAC) and Trimethyl- [3-methyldimethoxyl]silpropyl ammonium chloride (TMSAC) as shown in Table  1. Both products were surface active and antibacterial against Escherichia coli (E. coli) (Table 1).

Utilization of QAC as Antimicrobial Surfactant

Hospital-Associated Infections (HAI) are commonly caused by the invasive device and prosthesis implanted in the body. The practice of coating antimicrobial agents on biomedical surfaces or modifying the composite resin with such agents has been shown effective in reducing

 

*Corresponding author: Dr. John WM Yuen, School of Nursing, the Hong Kong Polytechnic University, Yuk Choi Road, Hung Hom, Kowloon, Hong Kong Special Administrative Region, Hong Kong, Tel: +852-2766-4130; Fax: +852-2364-9663; E-mail: john.yuen@polyu.edu.hk

Received June 21, 2013; Accepted July 27, 2013; Published August 02, 2013

Citation:  Yuen  John  WM,  Yung  Jolene  YK  (2013)  Medical  Implications  of Antimicrobial Coating Polymers- Organosilicon Quaternary Ammonium Chloride. Mod Chem appl 1: 107. doi:10.4172/2329-6798.1000107

Copyright: © 2013 Yuen John WM, et al. This is an open-access article distributed under the terms  of the  Creative  Commons Attribution  License, which  permits unrestricted  use,  distribution,  and  reproduction  in  any  medium,  provided  the original author and source are credited.


 


the incidence of HAI. This is attributed by the surfactant property of QAC and OrganoSiQAC compounds, which allows the absorption of the compound molecules to form a protective coating and the reaction with the surfaces to form a new antimicrobial film, respectively. The underlying anti-infective mechanism of such surfactant activity lies on the prevention of microorganism adherence to resist biofilm formation [7,8]. ‘Powder test’ has confirmed the theory of absorption of cations to prepare antimicrobial surfaces, especially on fibers and textiles [2]. Cations  alone  were  discovered  to  be  responsible  for  antimicrobial behavior [2].

Studies have demonstrated that colonization ofa range ofpathogenic organisms, including gram- positive and negative species as well as Candida albicans were inhibited by coating the surface of central venous catheters with BAC [9,10]. BAC-modified orthodontic composite resin has shown to exert inhibitory activity against Streptococcus  mutants (common cause of dental caries), without affecting the bond strengths of  the  material   [11].  However,  such  antimicrobial  properties  on surfaces were merely evidenced by in vitro experiments [9- 12]. The in vivo effectiveness is doubtful, since in the study of Imbert et al. [10], the inhibition of C. albicans adherence exerted by BAC has become ineffective when the plastic surface was layered with an extracellular matrix  gel  [10].  Nonetheless,  numerous  QAC-based  surfactants  are nowadays developed into nonascale that could also serve as vesicles for drugs. A successful case was reported by Matl et al. [12] that hydrophilic antibiotic drugs were bond together with QAC compounds onto the lipophilic   surfaces   of  Polytetrafluoroethylene   (PTFE)   prostheses, where  antibiotics  were  being  delivered  in  vivo  after  the  prosthetic implantation.

Despite it is already the most studied QAC compound, since 1994, BAC has been classified by the U.S. Food and Drug Administration as a Category IIISE active antiseptic, which means data is insufficient to classify as safe and effective  [13]. Epidemiologically, several hospital infection   outbreaks  were   associated  with   contamination   of  BAC solutions  with  bacteria,  especially  the  gram  negative  species  [14]. Several   organisms,   mainly   the   glucose   non-fermentative   bacillus including  Pseudomonas   aeruginosa   (an  important  causative  agent of nosocomial  infections),  were  viable  to  grow  in  the  diluted  BAC

solution  and  0.02%  BAC-soaked  cotton  balls  [15].  More  specifically,

BAC  solutions  contaminated  with  Serratia   marcescens  have  been associated with reported cases of lethal infections such as meningitis [16] and septic arthritis [17]. Nakashima et al. [18] have reported the


survival ability of Serratia marcescens in BAC solutions. Apart from the contamination issues, the biocidal nature of QAC compounds has also drawn the concerns about resistance development  [19] and potential toxicities   [20].  Several  bacterial  isolates,  including  Staphylococcus aureus, displaying decreased susceptibility to QACs have been reported [21].  Particularly,  QAC  compounds  of lower  molecular  weight  are gradually  released  from  the  bound  surface,  leading  to  the  loss  of antimicrobial activity over time while such leaching particles could also be toxic in vivo if it is not properly controlled [20].

The Era of OrganoSiQAC and Future Perspective

In  general,  since  there  is  a  new  physical  layer  formed  on  the surface, polymeric biocides are known to have certain advantages: (1) stable and without releasing low molecular weight toxic products to the environment; (2) no problem of residual toxicity; (3) durable and sustainable antimicrobial activity; and  (4) common bacterial strains do not appear to develop resistance [22]. Thermal stable polysiloxane polymers containing N,N’ -dialkylimidazolium halide groups are very potent against a broad spectrum of bacteria [22,23]. A research team led by Walters et al.  [24] has first demonstrated the formation of a waterproof firm with an OrganoSiQAC, known as Quat-Silsesquioxane (3-(trimethoxysilyl)-propyldimethyloctadecyl   ammonium   chloride) through  hydrolysis  on  glass  surfaces.  Quat-Silsesquioxane  has been tested in mammal animals and revealed its extremely low toxicities, in term of tetratogenicity and abnormal foetus development  [25,26]. As shown in Figure 1, when immobilized on the reactive surface, the QAC  compartment  of  Quat-Silsesquioxane  acts  as  the  functional group for microbicidal activities against representative species of alga [24], bacteria  and fungi  [23].  In late  90s,  Saito  and  colleagues  [27] developed a spray solution contains a mixture of Quat-Silsesquioxane and spherical silica particles, which improve the efficiency and quality of bioactive film, using a spray-dry procedure. A nonleachable adhesive coating was successfully polymerized on the oxidized silicone rubber surface   upon   silanization,   and   provided   stable   and   long-lasting antimicrobial protection both in vitro and in rats in vivo [28]. Later on, the shortcomings of peeling off and be scraped off from the surface were addressed by the layer-by-layer self-assembly approach [29]. Multilayer coatings  for  medical  implants  supply the  dual  functions to prevent bacterial  attachment  and to provide versatility of tunable release of therapeutic agents [30]. Recently, a new nanotechnology known as JUC (Brand name) was shown to be beneficial in preventing the growth of E. coli (a common cause of Urinary Tract Infection (UTI)) on the surface


 

Compound

Reaction

Raw materials used

Reaction condition

 

 

 

DEBSAC

 

(1)   N,N-diethyl-aminopropyl- methyldimethozysilanes

(2)   Benzyl chloride

 

Molar ratio = 1:1.2

 

 

 

Reflux at 80°C for 22 hours.

 

 

 

TMSAC

 

(1)   trimethylammonium ethanol solution (30%)

(2)   γ-chloropropylmethyl- dimethoxysilane

 

Molar ratio = 1.3:1

 

 

 

Stir the mixture at 90°C for 12

hours.

Table 1: The one-step non-catalytic synthesis of two OrganoSiQAC compounds [6].


 


of siliconized latex urinary catheters; and this property was reported to reduce the incidence rate of catheter-associated UTI, from 13.04% to 4.52%, in a randomized controlled clinical trial with 1,150 patients [31]. So far, the antimicrobial coatings discussed were all applied on inanimate surfaces, but could they be used on animate surfaces such as hands and skin? (Figure 1).

The  JUC  spray is  marketed  as  a physical  antimicrobial  dressing for  wound  care,  its  formulation  composed  of 2%  OrganoSiQAC  as key ingredient, despite the exact OrganoSiQAC formulae has not been disclosed by the manufacturer. This forms a cutting-edge technology indicative to be applicable on skin and mucosal surfaces. The idea is simple  enough underlying the principle that  avoidance  of microbial adherence on the surface and surrounding of wounds would prevent wound  infection,  and  thus  favor  wound  healing.  At  first,  it  was believed that microcidal effects of polymers formed by OrganoSiQAC compounds  were  proportionally  correlated  with  the  length  of  the carbon chain in the alkyl moieties and their abilities of polymerization [32]. Actually, the killing activities are dependent on the satellite end groups  determined  by  the  formation  of  unimolecular  micelles  as consequence  of the  polyoxazolines  aggregation  behavior,  instead  of the polymeric chain lengths  [33]. Take JUC as example, immediately after contacting any surfaces, an invisible antimicrobial layer with dual overlaying structure: the bonded film and the positive charge film are

produced. The bonded film aims to secure the adhesion to the surface,

whereas positive charge film contains polycations bearing considerable positive charge may destructively interact through electrostatic forces with the negatively charged bacteria walls and membranes leading to the killing effects (Figure 2) [22,34].

 

 

(CH3O)3Si-R  3CH OH3(HO)3Si-R  3H O2R O   Si  OO

 

 

(CH3)2            R=-(CH3)3 NC18 H37Cl  REACTIVE             SURFACE         

Figure 1: Diagram adopted from [23,24] displaying the hydrolysis reaction of Quat-Silsesquioxane on glass surface. Microcidal activity is exerted by the  R

group exposed at the bound surface.

 

Figure 2: Diagram adopted from [34] showing the dual layers form by JUC spray to exhibit antimicrobial function.

 


Clinically,  several  studies  conducted  in  Mainland  China  have already been demonstrated the effectiveness of JUC spray on preventing post-operative infection and reducing wound healing time in patients who received different  surgical procedures,  such  as circumcision in males [35] and tumor removal of oral cancer patients [34]. In neck and head cancer patients who are receiving radiation therapy, JUC when applied at the onset of acute dermatitis, was shown to relieve the itching and pain sensation, promote wound healing, and reduce the incidence of  secondary  infection  by  13%  [36].  In  another  study  conducted with patients  in  Intensive  Care  Unit  (ICU)  of a  major  Hong  Kong hospital,  the  incidence  rate  of ventilator-associated  pneumonia was significantly reduced from 54.2% to 8.4% after the application of JUC to the oral and nasal cavity [37]. Furthermore, a case of scalp abscess infected  with   methicillin-resistant   Staphylococcus   aureus   (MRSA) was successfully treated solely with JUC spray without other form of treatment including antibiotics [38]. This reported case supported not only future investigation regarding the therapeutic roles of JUC and other OrganoSiQAC, but also suggested novel treatment alternative for multiple drugs resistance the potential reduction of antibiotics usage. In our laboratory, the efficacy of using JUC as a long-lasting hygienic handrub  product  was  evaluated  according  to  the  requirements  of European Standard, and another study was underway to investigate the effect of JUC in blocking MRSA transmission in a hospital ward environment. The OrganoSiQAC-based antimicrobial nanotechnology could be the trend of modern toolsto address important issues of infection control: reduce use of antibiotics, treatment alternatives for multiple antibiotics resistance, blocking the route of transmission of specific organisms in clinical and community settings.

Conclusion

In summary, the chemistry of QAC and OrganoSiQAC compounds has  formed  the  fundamental  concept  about  physical  antimicrobial surface.  The  current  body  of  literature  identifies  BAC  and  Quat- Silsesquioxane as typical clinically used. Newly emerging OrganoSiQAC nanotechnology such as JUC may be the future direction of research and application.

References

1.  Tischer M, Pradel G, Ohlsen K, Holzgrabe U (2012) Quaternary ammonium salts  and  their  antimicrobial  potential:  targets  or  nonspecific  interactions? ChemMedChem 7: 22-31.

2.  Speier JL, Malek JR (1982) Destruction of microorganisms by contact with solid surfaces. Journal of Colloid and Interface Science 89: 68-76.

3.  Alum A,  Rashid A,  Mobasher  B, Abbaszadegan  M  (2008)  Cement-based biocide coatings for controlling algal growth in water distibution canals. Cement and Concrete Composites 30: 839-847.

4.  Kuca K, Kivala M, Dohnal V (2004) A general method for the quaternization of N,N-dimethylbenzylamines with long chain n-alkylbromides. Journal of Applied Biomedicine 2: 195-198.

5.  Soula  G,  Gerard  Mignani  M  (1993)  Organosilicon  compounds.  US  Patent 5214176.s

6.  Li  J,  Zhang  Q,  Wang Y,  Zhang  W,  Li T  (2012)  Synthesis  and  properties of  organosilicon  quaternary  salts  surfactants.  Journal  of  Surfactants  and Detergents 15: 339-344.

7.  Carmona-Ribeiro AM,  de  Melo  Carrasco  LD  (2013)  Cationic  antimicrobial polymers and their assemblies. Int J Mol Sci 14: 9906-9946.

8.  Kugel A, Stafslien S, Chisholm BJ (2011) Antimicrobial coatings produced by “tetheringbiocides to the coating matrix: A comprehensive review. Progress in Organic Coatings 72: 222-252.

9.  Tebbs  SE,  Elliott TS  (1993) A novel  antimicrobial  central venous  catheter impregnated with benzalkonium chloride. J Antimicrob Chemother 31: 261-271.

10. Imbert C, Lassy E, Daniault G, Jacquemin JL, Rodier MH (2003) Treatment of


 


plastic and extracellular matrix components with chlorhexidine or benzalkonium chloride: effect on Candida albicans adherence capacity in vitro. J Antimicrob Chemother 51: 281-287.

11. Sehgal V, Shetty VS, Mogra S, Bhat G, Eipe M, et al. (2007) Evaluation of antimicrobial and physical properties of orthodontic composite resin modified by addition of antimicrobial agents--an in-vitro study. Am J Orthod Dentofacial Orthop 131: 525-529.

12. Matl FD, Obermeier A, Repmann S, Friess W, Stemberger A, et al. (2008) New anti-infective coatings of medical implants. Antimicrob Agents Chemother 52: 1957-1963.

13. Boyce JM, Pittet D (2002) Guideline for Hand Hygiene in Health-Care Settings. Recommendations  of  the  Healthcare  Infection  Control  Practices  Advisory Committee  and  the  HICPAC/SHEA/APIC/IDSA  Hand  Hygiene  Task  Force. Society for Healthcare Epidemiology of America/Association for Professionals in Infection Control/Infectious Diseases Society of America. MMWR Recomm Rep 51: 1-45.

14. Weber DJ, Rutala WA, Sickbert-Bennett EE (2007) Outbreaks associated with contaminated antiseptics and disinfectants. Antimicrob Agents Chemother 51: 4217-4224.

15. Oie S, Kamiya A (1996) Microbial contamination of antiseptics and disinfectants. Am J Infect Control 24: 389-395.

16. Sautter RL, Mattman LH, Legaspi RC (1984) Serratia marcescens meningitis associated with a contaminated benzalkonium chloride solution. Infect Control 5: 223-225.

17. Nakashima AK, McCarthy MA, Martone WJ, Anderson RL (1987) Epidemic septic  arthritis  caused  by  Serratia  marcescens  and  associated  with  a benzalkonium chloride antiseptic. J Clin Microbiol 25: 1014-1018.

18. Nakashima  AK,  Highsmith  AK,  Martone  WJ  (1987)  Survival  of  Serratia marcescens in benzalkonium chloride and in multiple-dose medication vials: relationship to epidemic septic arthritis. J Clin Microbiol 25: 1019-1021.

19. Fraise AP (2002) Susceptibility of antibiotic-resistant cocci to biocides. J Appl Microbiol 92 Suppl: 158S-62S.

20. Beyth N, Yudovin-Farber I, Bahir R, Domb AJ, Weiss EI (2006) Antibacterial activity of dental composites containing quaternary ammonium polyethylenimine nanoparticles against Streptococcus mutans. Biomaterials 27: 3995-4002.

21. Carson  RT,  Larson  E,  Levy  SB,  Marshall  BM,  Aiello  AE  (2008)  Use  of antibacterial consumer products containing quaternary ammonium compounds and drug resistance in the community. J Antimicrob Chemother 62: 1160-1162.

22. Mizerska U, Fortuniak W, Chojnowski J, Halasa R, Konopacka A, et al. (2009) Polysiloxane cationic biocides with imidazolium salt (ImS) groups, synthesis and antibacterial properties.  European Polymer Journal 45: 779-787.

23. Isquith AJ, Abbott EA, Walters PA (1972) Surface-bonded antimicrobial activity of an organosilicon quaternary ammonium chloride. Appl Microbiol 24: 859-863.


24. Walters PA, Abbott EA, Isquith AJ (1973) Algicidal activity of a surface-bonded organosilicon quaternary ammonium chloride. Appl Microbiol 25: 253-256.

25. Siddiqui WH, Malek JR, Stanton E, Hobbs EJ (1983) Percutaneous absorption of an antimicrobial organosilicon quarternary ammonium chloride in rabbits. J Appl Toxicol 3: 146-149.

26. Siddiqui WH, York  RG (1993) Quaternary silsesquioxane: a developmental toxicity study in rats. Fundam Appl Toxicol 21: 66-70.

27. Saito T, Takatsuka T, Kato T, Ishihara K, Okuda K (1997) Adherence of oral streptococci to an immobilized antimicrobial agent. Arch Oral Biol 42: 539-545.

28. Gottenbos B, van der Mei HC, Klatter F, Nieuwenhuis P, Busscher HJ (2002) In  vitro  and  in  vivo  antimicrobial  activity  of covalently  coupled  quaternary ammonium silane coatings on silicone rubber. Biomaterials 23: 1417-1423.

29. Wong SY, Li Q, Veselinovic J, Kim BS, Klibanov AM, et al. (2010) Bactericidal and  virucidal  ultrathin  films  assembled  layer  by  layer  from  polycationic N-alkylated polyethylenimines and polyanions. Biomaterials 31: 4079-4087.

30. Wong SY, Moskowitz JS, Veselinovic J, Rosario RA, Timachova K, et al. (2010) Dual  functional  polyelectrolyte  multilayer  coatings  for  implants:  permanent microbicidal base with controlled release of therapeutic agents. J Am Chem Soc 132: 17840-17848.

31. He W, Wang D, Ye Z, Qian W, Tao Y, et al. (2012) Application of a nanotechnology antimicrobial spray to prevent lower urinary tract infection: a multicenter urology trial. J Transl Med 10 Suppl 1: S14.

32. Chen     CZ,     Cooper     SL,     Tan     NCB     (1999)     Incorporation     of dimethyldodecylammonium    chloride    functionalities    onto    poly(propylene imine) dendrimers significantly enhances their antibacterial properties. Chem Commun 1999: 1585-1586.

33. Munoz-Bonilla  A,   Fernandez-Garcia   M  (2012)   Polymeric   materials  with antimicrobial activity. Progress in Polymer Science 37: 281-339.

34. Zeng Y, Deng R, Yeung BHS, Loo WTY, Cheung MNB, et al. (2008) Application of an antibacterial dressing spray in the prevention of post-operative infection in oral cancer patients: A phase 1 clinical trial. African Journal of Biotechnology 7: 3827-3831.

35. Chuan L, Weili Z, Zili H, Shengjie Y, Zuo L (2010) Clinical study of long-acting antibacterial material JUC for prevention of incicion infection in circrmcision. Journal of Chongqing Medical University 35: 1271-1273.

36. Xian-ming D, Zhen K, Jia-zhu W (2013) Prevention and treatment of acute radiodermatitis  with  JUC  physical  antimicrobial  spray  dressing.  Journal  of Dermatology and Venereology.

37. Li W, Ma X, Peng Y, Cao J, Loo WTY, et al. (2011) Application of a nano- antimicrobial film to prevent ventilator-associated pneumonia: A pilot study. African Journal of Biotechnology 10: 1926-1931.

38. Wan  KA,  Ng  MY,  Wong  YT  (2011)  New  horizon  on  community-acquired methicillin resistant Staphylococcus aureus (CA-MRSA) skin and soft tissue infection: nanotechnology antimicrobial spray. HK J Emerg Med 18: 432-436.


 



9.Medical Implications of Antimicrobial Coating Polymers- Organosilicon Quaternary Ammonium Chloride.pdf


© 2020 南京神奇科技开发有限公司 版权所有 洁悠神学术中心